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Contrainte de cisaillement maximum et angle de torsion :
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En divisant la premiére équation par la seconde on peut écrire
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D’ou I’on tire
D, = 207 ’
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Et en insérant I’expression du diametre dans 1’équation de la contrainte de cisaillement max, on
peut alors exprimer

”Tiaxf }
. Application numérique :
G =82 GPa
D, =0,09m
D; = 0,074 m

A=10,82
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Probléme 2

Schéma de 1’état de contrainte au point Mo : L’état de contrainte est bidimensionnel. La figure
ci-contre indique le choix des axes de référence en ce point.
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Caractéristiques géométriques de la section
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Expression des contraintes non nulles et cercle de Mohr : les contraintes oy et 7 permettent de
dessiner les points K et K, et ainsi de définir le centre du cercle 75, et d’exprimer que le rayon
du cercle est égal a la contrainte de cisaillement maximum.
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La représentation du cercle de Mohr permet aisément de se convaincre que la contrainte de
cisaillement maximale est donnée par
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D’ou I’on peut exprimer I’effort normale
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Les contraintes principales sont données par

_Gx Ox g 2 —
o=+ f(;) + 12 = 336 MPa

g,=0
Oy (O'x)2
03 =—— [|=]) +71f=-24MPa
. Application numérique
F=4,07-10" m* W, =200-10° m’
7 =89,9 MPa o =312 MPa
N=127-10°N z,.. =180 MPa

o, =336 MPa o, =-24,0 MPa
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Probléme 3

. Moments d'inertie et de résistance polaires
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Contrainte de cisaillement maximum

Condition de similitude des arbre : Comme 1., €t M; sont respectivement égaux dans les
deux cas, il en résulte que W, =W,
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Le rapport des angles de torsion est :
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Le rapport des masses vaut quant a lui :
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. Application numérique :

a =0,8057 = d, =14,50 cm

P _ 833
@
M 0,505
ml

Ainsi, a contrainte égale, le cylindre creux est davantage rigide (¢, <¢,) bien que sa masse ne
soit que la moitié de celle du cylindre plein.
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